院子里升起了一團(tuán)篝火。那修女捧著一本書,坐在門外的一塊石頭上,給圍繞著她的孩子們講故事。
艾拉在二樓默默地注視著他們,直到修女覺得天色太晚了讓孩子們回房間休息,這期間孩子們的每一個動作,都透著對那位修女的喜愛。
如果這里不是亞伯拉罕正教會的教堂,而是七丘帝國的神廟,那些祭司們會收留趕路的人么?會收養(yǎng)被遺棄的兒童么?會讓這些孩子們?nèi)绱讼矏勖矗?br>
——這種東西,應(yīng)該還是看個人的吧?
艾拉甩了甩頭,把剛剛出現(xiàn)在腦中的那種荒謬想法給甩了出去,然后掏出一疊紙來擺在桌子上。那上面是一些還沒解決的幾何問題。
其中一個是一條拋物線,一條線斜著切過它,與拋物線一同圍成了一個弓形。戈特弗里德給艾拉的任務(wù)是計算這個弓形的面積。
艾拉想了想,以弓形的直邊為底邊,又在拋物線上選了一個點,一同連成了一個大三角形。然后以大三角形的另外兩條邊為底邊,各自又選了拋物線上的一個點連成了兩個小三角形。
艾拉凝視著這三個三角形。按戈特弗里德計算圓面積的方法,這些三角形如果不斷繪制下去,它們的面積之和會越來越接近這個弓形的面積吧。
但是,這樣繪制的三角形根據(jù)選點的不同,會有各種各樣的大小,且無規(guī)律。如果要計算面積和,必須要制定一個統(tǒng)一的繪制規(guī)則。
艾拉嘆了口氣,把這張紙給撕了,重新畫了一張。這一次,她把那根直線平行移動,直到切拋物線于一點。艾拉以這個點為頂點繪制了第一個大三角形。然后她用了同樣的方法,繪制了下一級的兩個三角形。
內(nèi)容未完,下一頁繼續(xù)閱讀